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Abstract
As the most water shortage and water polluted area in China, the water quality prediction is of utmost needed and important 
in Haihe River Basin for its water resource management. The long short-term memory (LSTM) has been a widely used tool 
for water quality forecast in recent years. The performance and adaptability of LSTM for water quality prediction of different 
indicators needs to be discussed before it adopted in a specific basin. However, literature contains very few studies on the 
comparative analysis of the various prediction accuracy of different water quality indicators and the causes, especially in 
Haihe River Basin. In this study, LSTM was employed to predict biochemical oxygen demand (BOD), permanganate index 
 (CODMn), dissolved oxygen (DO), ammonia nitrogen  (NH3–N), total phosphorus (TP), hydrogen ion concentration (pH), and 
chemical oxygen demand digested by potassium dichromate  (CODCr). According to results under 24 different input condi-
tions, it is demonstrated that LSTMs present better predicting on BOD,  CODMn,  CODCr, and TP (median Nash–Sutcliffe 
efficiency reaching 0.766, 0.835, 0.837, and 0.711, respectively) than  NH3–N, DO, and pH (median Nash–Sutcliffe efficiency 
of 0.638, 0.625, and 0.229, respectively). Besides, the performance of LSTM to predict water quality is linearly related to 
the maximum value of temporal autocorrelation and cross-correlation coefficients of water quality indicators calculated 
by maximal information coefficient with the coefficients of determination of 0.79 to approximately 0.80. This study would 
provide new knowledge and support for the practical application and improvement of the LSTM in water quality prediction.

Keywords Water quality prediction · Long short-term memory (LSTM) · Haihe River Basin · Performance comparative 
analysis

Introduction

The Haihe River Basin (HRB) occupies an extremely 
important strategic position in the political, economic, 
and cultural development of China (Song et al. 2021; 
Wang et al. 2014; Zhu et al. 2010). Under the background 
of rapid urbanization and economic development, the 
Haihe River Basin receives large capacities of sewage 
and waste discharged from diverse origins (Dang et al. 
2017; Zheng et al. 2015), suffering the most water short-
ages and water pollution among all seven river basins in 
China (Cao et al. 2021). The ecological resources and 
regulatory functions have been destroyed on a large scale 
due to environmental pollution, which affects the healthy, 
sustainable, and coordinated development of the basin 
area (Song et al. 2021). Hence, it is urgent to carry out 
scientific and comprehensive water quality prediction in 
HRB and provide insights for its subsequent pollution 
control.
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Process-based models, such as Environmental Fluid 
Dynamics Code (EFDC) (Hamrick 1992) and Soil and Water 
Assessment Tool (SWAT) (Santhi et al. 2006), are primary 
tools for supporting water quality predictions and have been 
widely applied in environmental management. Neverthe-
less, a lot of input data and boundary conditions (such as 
topographic data, weather conditions, and load input) are 
required but usually unavailable, which makes it difficult 
and uncertain to establish process-based models (Jiang 
et al. 2021). However, data-driven techniques provide an 
effective alternative (Palani et al. 2008), such as ANN (Kim 
et al. 2010; Najah Ahmed et al. 2019), RNN (Antanasijević 
et al. 2013; Li et al. 2019). Data-driven models can effi-
ciently establish the relationships among water quality vari-
ables, thus rendering the forecast of boundary conditions 
unnecessary (Liang et al. 2020; Maier and Dandy 1996). 
Among deep learning algorithms, the LSTM (Hochreiter and 
Schmidhuber 1997) has a unique gate structure, which ena-
bles it to capture long-term dependencies in time series and 
thus is particularly good at processing time series (Zhang 
et al. 2022), such as natural language processing (Mikolov 
et al. 2010), speech recognition (Graves and Jaitly 2014), 
and machine translation (Sutskever et al. 2014). Besides, 
LSTM has been introduced into the field of hydrology fore-
cast, including predicting water table depth (Zhang et al. 
2018) and streamflow(Hu et al. 2018; Kratzert et al. 2019; 
Le et al. 2019; Sudriani et al. 2019). Furthermore, some 
studies also reported the successfully application of LSTM 
in water quality prediction (Jiang et al. 2021; Song et al. 
2021; Wang et al. 2017; Zhang et al. 2022). In particular, the 
ability of LSTM to simulate the forecast capacity of EFDC 
has been confirmed (Liang et al. 2020). Using LSTM neu-
ral network as the modeling algorithm is an effective way 
to improve the accuracy of water quality prediction (Zhang 
et al. 2022).

Recently, water quality in HRB has been predicted using 
different models, such as a comprehensive hydrodynamic and 
water quality model package (Liu et al. 2008), principal com-
ponent regression (PCR), and artificial neural networks (ANN) 
(Zhang et al. 2012), chaotic prediction model based on wave-
let transform (Zhang et al. 2016), improved fuzzy time series 
model (Li 2018), support vector regression (SVR) combined 
with empirical mode decomposition and fast independent 
component analysis noise reduction (Liang et al. 2019), and 
a hybrid LSTM model that recruits synchro-squeezed wave-
let transform (SWT) (Song et al. 2021). It is obvious that the 
same model performed differently in predicting different water 
quality indicators. Although both the process-based model and 
data-driven model were applied to predict the water quality of 
HRB, these studies still have limitations. Firstly, dissolved oxy-
gen (DO) and potassium permanganate index  (CODMn) were 
the most popular water quality indicators to be predicted in 
HRB, which is a similar trend all over the world (Tiyasha et al. 

2020). However, according to the Bulletin on ecological and 
Environmental Conditions of China 2020 from the Ministry of 
Ecology and Environment of the People’s Republic of China, 
chemical oxygen demand digested by potassium dichromate 
 (CODCr),  CODMn, biochemical oxygen demand (BOD) are the 
primary pollution indicators and total phosphorus (TP) for sev-
eral tributaries of HRB. It is significant to predict and analyze 
these water quality indicators, whereas very few studies focus 
on predicting these water quality indicators, especially using 
data-driven models.

Secondly, the performance of LSTM varies greatly when 
predicting different indicators in different basins. For example, 
the RMSEs (root mean square error) of LSTM to predict DO 
and TP in Taihu Lake are respectively 0.046 and 0.041 (Wang 
et al. 2017), while those to predict DO in Yongding River and 
Gangnan gauging station of Haihe River Basin are 1.5588 and 
0.9281 (Song et al. 2021), respectively. Accordingly, evalua-
tion of feasibility and comparative analysis of LSTM is essen-
tial before it is applied to predict different water quality indica-
tors in a specific basin.

Thirdly, few studies concentrate on the comparative analysis 
of the prediction accuracy of different water quality indicators, 
especially the performance of LSTM. Even though some stud-
ies found model performance would be various in predicting 
different water quality indicators (Najah Ahmed et al. 2019), 
little attention was paid to the causes. As the basic approach of 
water quality prediction models is to establish the sequential 
relationship between model input variables and output vari-
ables (Maier et al. 2010; Maier and Dandy 2000; Tiyasha et al. 
2020), the time series features, which are mainly temporal 
autocorrelation/cross-correlation, of water quality indicators, 
affect model performance. Therefore, the relationship between 
temporal autocorrelation/cross-correlation of water quality 
indicators and model performance should be considered in 
practical application, which has not been analyzed yet.

The aims and significance of this paper are summarized 
as follows: Firstly, LSTMs were employed to predict 7 dif-
ferent water quality indicators of HRB. Water quality indica-
tors considered are ammonia nitrogen  (NH3–N), hydrogen 
ion concentration (pH), BOD,  CODMn, DO, TP, and  CODCr. 
Secondly, model performances of different water quality 
indicators in HRB were compared and analyzed. Thirdly, 
the relationship between autocorrelation/cross-correlation 
of water quality indicators and LSTM performance was 
analyzed.

Materials and methods

Study area and data collection

The Haihe River Basin (HRB, shown in Fig. 1), is the largest 
river catchment in Northern China (Dang et al. 2017) with 
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a catchment area of about 2.6 ×  105  km2 and water resource 
of about 1.05 ×  105  m3/km2. Located in the continental mon-
soon climate zone, the HRB (nearly 112–120°E, 35–43°N) 
belongs to the semi-humid and semi-arid regions. Approxi-
mately 75–85% of the annual precipitation is concentrated in 
the rainy season from June to September (Bao et al. 2012). 
Monthly water quality data of 76 monitoring stations in 
HRB from January 2010 to September 2014 were obtained 
from Hebei Provincial Academy of Ecological Environmen-
tal Science, China (http:// www. hebhky. cn/).

In this study, water quality indicators considered are 
biochemical oxygen demand (BOD), permanganate index 
 (CODMn), dissolved oxygen (DO), ammonia nitrogen 
 (NH3–N), total phosphorus (TP), hydrogen ion concentra-
tion (pH), and chemical oxygen demand digested by potas-
sium dichromate  (CODCr). The basic statistical parameters, 
i.e., mean, minimum, maximum, standard deviation (SD), 
and coefficient of variation (CV) of these water quality indi-
cators are depicted in Table 1. Large changes can be seen 
in some water quality indicators with a high coefficient of 
variation (i.e., 1.796, 2.01, 1.4, 1.2, and 1.703 for  NH3–N, 

BOD,  CODMn,  CODCr, and TP, respectively). The existence 
of large disparity in the indicators’ concentrations can be 
attributed to the types (non-point and point) and nature of 
sources that have been distributed in the river basin’s wide 
geographical area, and large geographical variations in 
climate as well as seasonal effects pertaining to the study 
region (Najah Ahmed et al. 2019).

Methodology framework

The methodology framework is shown in Fig. 2. Firstly, 
the temporal autocorrelation coefficients (ACF) and cross-
correlation coefficients (CCF) of water quality monitoring 
data were calculated with lag times from 1 to 12. In this 
study, the ACF and CCF examine the correlation between 
the current concentration and historical concentration of the 
same water quality indicator or different indicators, respec-
tively. Secondly, a number of LSTM models and artificial 
neural network (ANN, as control experiment) models with 
different model structures were developed, whose perfor-
mances were thereafter evaluated based on Nash–Sutcliffe 

Fig. 1  Study areas and locations 
of water quality monitoring 
stations

Table 1  Basic statistical 
analysis for seven water quality 
indicators

Indicators Unit Mean Minimum Maximum SD CV

NH3–N mg/l 8.104 0.012 122.000 14.554 1.796
BOD mg/l 12.3 0.2 220.0 24.7 2.01
CODCr mg/l 45.2 2.0 381.0 56.3 1.2
CODMn mg/l 11.0 0.6 127.0 16.0 1.4
DO mg/l 6.75 0.02 18.80 3.50 0.52
pH - 7.89 6.42 8.99 0.38 0.05
TP mg/l 0.730 0.005 8.880 1.243 1.703

http://www.hebhky.cn/


 Environmental Science and Pollution Research

1 3

efficiency (NSE) and correlation of coefficient (R). LSTM 
performances of different water quality indicators were 
compared and analyzed. Finally, this study identified and 
analyzed the relationship between temporal autocorrelation/
cross-correlation and LSTM performance.

Temporal autocorrelation/cross‑correlation 
calculation

Temporal autocorrelation and cross-correlation coefficients 
are calculated respectively by Eq. (1) and (2):

where AC and CC represent autocorrelation and cross-cor-
relation respectively, and ACF and CCF denote correlation 
metric formulas (Eqs. (3)–(4)); k is the lag time ranging from 
1 to 12; x and y are two different water quality indicators; 
Xt = {xk, xk+1, xk+2,… , xt} , Xt−k = {x0, x1, x2,… , xt−k} , and 
Yt−k = {y0, y1, y2,… , yt−k}.

This study utilized two common correlation metrics, 
the Pearson coefficient and maximal information coeffi-
cient, to calculate temporal autocorrelation and cross-cor-
relation coefficients of water quality indicators. Pearson 
coefficient (Pearson and Lee 1900), defined as Eq. (3), is 
one of the most famous relationship metrics with values 

(1)AC(x, k) = ACF
(

Xt,Xt−k

)

(2)CC(x, y, k) = CCF
(

Xt,Yt−k

)

varying between − 1 and 1. The closer its absolute value 
is to 1, the stronger the linear correlation is. Note that 
only the absolute values of the Pearson coefficient were 
considered. Furthermore, the maximal information coef-
ficient (MIC, Eqs. (4) and (5)) can reflect the depend-
ence between two variables no matter whether a linear 
or other functional relationship between them (Reshef 
et al. 2011). The measurement MIC is symmetric and 
normalized into a range [0, 1] . A high MIC value indicates 
a strong dependency between the investigated variables, 
whereas MIC = 0 describes the independent relationship 
between two variables.

where x = {x1, x2,… , xn} and y = {y1, y2,… , yn} ; x and y 
are the mean value of x and y , respectively; H(x) and H(y) 

(3)r(x, y) =

∑n
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Fig. 2  Methodology framework 
of study. ACF and CCF repre-
sent temporal autocorrelation 
coefficients and cross-correla-
tion coefficients, respectively
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are the entropy of x and y , respectively, and H(x, y) is their 
joint entropy; nxny < B(n) and B(n) = n0.6.

Development and evaluation of LSTMs

LSTM (described in Appendix A) is an advanced recurrent 
neural network (RNN) that includes specialized memory 
blocks (shown in Fig. 3b) which can capture multi-time-
step relationships (Read et al. 2019). The difference between 
LSTM and other ANNs is that the hidden layer in LSTM is 
constituted of an internal self-looped unit (shown in Fig. 3b) 
and continuously iterates input of t time steps to extract 
information (shown in Fig. 3a) (Zhang et al. 2022), which 
makes LSTM able to learn from the long-term (static) and 
short-term (dynamic) dependencies raised in time series and 
can conquer the exploding/vanishing gradient bottlenecks 
owing to the gradient propagation of the recurrent network 
over multi-layers (Zhou 2020).

Nash–Sutcliffe efficiency (NSE; Eq.  (6)) (Nash and 
Sutcliffe 1970), one of the most widely used criteria for 
hydrological modeling (Bennett et al. 2013), and correla-
tion of coefficient (R, Eq. (8)) are models evaluation criteria 
in this study. Trying to minimize the variance unexplained 
(FVU, the residual sum of squares divided by the total sum 
of squares, Eq. (7)), models used the FVU (Eq. (7)) as the 
loss function (Xiang et al. 2020; Xiang and Demir 2020). 

The lower the FVU, the higher the NSE. NSE ranges from 
−∞ to 1, and the closer its value is to 1, the better the model 
performs. The model performance is acceptable when 
NSE ≥ 0.65 (Ritter and Muñoz-Carpena 2013), and it per-
forms well when NSE ≥ 0.75 (Moriasi et al. 2007; Tiyasha 
et al. 2020).

where n is the number of observations; ym,i and yp,i define 
the ith observations and the corresponding values pre-
dicted by LSTM, respectively; ym represents the average of 
observations.

Data from each station have been stochastically split into 
three parts: training (80%), validation (10%), and test (10%) 
subset. And the same subsets (training/validation/test) of 

(6)NSE = 1 −
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Fig. 3  The workflow and struc-
ture of LSTM neural network. a 
One by one spread of LSTM in 
the time step dimension; b con-
ceptual illustration of memory 
block in LSTM
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different stations were combined to form the training, vali-
dation, and test dataset. All input variables are standardized 
according to Eq. (9) to ensure input variables remain on the 
same scale and to guarantee a stable convergence of param-
eters in the LSTM.

where x and std signify the average and standard deviation 
of the raw observations, respectively; xi defines every single 
value of the raw data, while x̃i represents the standardized 
value.

In this study, LSTM models were developed respec-
tively to forecast the future one-month data of a single 
water quality indicator. There were two different com-
binations of input variables (input patterns, shown in 
Table S2): (a) univariate inputs: only the variable to be 
predicted could be used as input variable; (b) multivari-
ate inputs: all water quality variables are utilized as input 
variables. The time steps (k) of model inputs range from 1 
to 12 months, which means series data of input variables 
from the previous 1 to k were used as model inputs. For 
each LSTM model, Keras Tuner was employed to opti-
mize model hyperparameters by 150 times random search 
(10 repetitive times training for each random search) from 
the searching space of hidden layers and neurons (shown 
in Table S2). In this stage, models were trained on the 
training dataset, then the optimized model structures were 
automatically selected by Keras Tuner according to NSEs 
on the validation dataset. Finally, optimized LSTM mod-
els would be trained and tested respectively on the train-
ing dataset and testing dataset repeatedly for 100 times 
to eliminate the effects of uncertainty caused by random 
initialization of model parameters.

Other hyperparameters of LSTM were determined using 
trial and error. The batch size and the dropout rate are 256 
and 0.5, respectively. The maximal epoch is set to 200, 
which means model training will end that upon convergence 

(9)x̃i =
xi − x

std

or the epoch reaches 200. Besides, the learning rate is initial-
ized to 0.1 and will be automatically decreased while there 
is no reduction with the value of loss function on validation 
dataset for 5 continuous epochs.

Computation environment

All computations were conducted in Python. TensorFlow 
was employed to build LSTM, while MIC was calculated 
using the minepy library (Albanese et al. 2013) (alpha = 0.6, 
c = 15). Other Python libraries used are NumPy, pandas, 
Seaborn, SciencePlots (https:// github. com/ garre ttj403/ Scien 
cePlo ts), Matplotlib (Hunter 2007), and KerasTuner (https:// 
keras- team. github. io/ keras- tuner/), which is a python library 
that can automatically select the optimized hyperparameters 
of models built with TensorFlow or Keras.

Results and discussion

LSTM performances of prediction for different water 
quality indicators

The performances of LSTMs and ANNs to predict differ-
ent water quality indicators are shown in Table 2. The opti-
mal input patterns of LSTMs for predicting  NH3–N, BOD, 
 CODCr,  CODMn, pH, and TP are univariate inputs, while 
multivariate inputs for predicting DO. But for ANN, the 
optimal input patterns are univariate inputs. For predicting 
 NH3–N, BOD, and  CODCr, LSTM and ANN have the same 
optimal number of input months, which are respectively 8, 
5, and 3 months. However, LSTM needs only 3 months of 
data of input variables to predict DO well, but ANN needs 
11-month data.

Among all LSTM models, LSTMs for predicting  CODCr 
and  CODMn performed the best with median NSE of 0.837 
and 0.835, whereas LSTMs to predict pH are the worst with 
median NSE of 0.229 among seven water quality indicators. 

Table 2  Summary of model 
performances and optimal 
hyperparameters for different 
water quality indicators

Models Hyperparameters 
and performances

NH3–N BOD CODCr CODMn DO pH TP

LSTM Input patterns a a a a b a a
Months of input 8 5 3 7 5 6 6
Optimal neurons 8–20-16 8–16-8 20–12-12 16–8-20 4–12-12 12–20 16–16-12
Median of NSE 0.638 0.766 0.837 0.835 0.625 0.229 0.711
Median of R 0.809 0.883 0.919 0.932 0.819 0.495 0.862

ANN Input patterns a a a - a - a
Months of input 8 5 3 - 11 - 5
Optimal neurons 20–16-8 20–16-8 20–16-12 - 20–20-8 - 20–20-8
Median of NSE 0.607 0.768 0.839 - 0.563 - 0.542
Median of R 0.793 0.878 0.920 - 0.794 - 0.876

https://github.com/garrettj403/SciencePlots
https://github.com/garrettj403/SciencePlots
https://keras-team.github.io/keras-tuner/
https://keras-team.github.io/keras-tuner/
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Other water quality indicators, such as  NH3–N, BOD, DO, 
and TP, get median NSE of 0.638, 0.766, 0.625, and 0.711, 
respectively. Comparing the performance of LSTM and 
ANN, LSTM outperformed ANN when predicting  NH3–N, 
 CODMn, DO, pH, and TP, while little difference between 
them in predicting BOD and  CODCr. Additionally, ANNs for 
predicting  CODCr and pH did not converge. The inconsist-
ency of ANN indicates that it has poor performance com-
pared to the LSTM model. This is because water quality data 
are time series data, and LSTMs are generally superior to 
ANN in terms of long-term dependence (Jiang et al. 2021).

Model performances are affected by their input condi-
tions, which decide the information to input into the model 
(Lv et al. 2020; Maier and Dandy 2000; Tiyasha et al. 2020). 
Therefore, model performances of different water quality 
indicators need to be analyzed and compared from the per-
spective of the input parameters and their lag times.

The influence of different input conditions on LSTM 
performances

The distributions of NSE values of LSTMs for each water 
quality indicator in all input conditions are shown in Fig. 4. 
Model performances measured by correlation of coefficient 
(Fig. S1) are generally consistent with performances meas-
ured by NSE. Models to predict BOD,  CODMn,  CODCr, TP 
are acceptable since most of their NSE values are bigger 
than 0.65, and some models performed well (NSE > 0.75). 
However, the NSEs for  NH3–N, DO, and pH are all below 
0.65. This findings show that it is challenging to develop 
a consistent model for all water quality indicators using 
LSTM models due to high variations and intrinsic nonlin-
ear correlation among the parameters of the water quality 
because of the probabilistic nature and chemical procedure 
of water environment (Najah Ahmed et al. 2019). Thus, 
different models or more advanced models are supposed 
to be considered for predicting different variables. On the 
one hand, when inputting data of more time steps to some 
extent, model performances for nearly all seven water quality 
indicators get significantly better than that with 1-time-step 
input. For example, the optimal number of months of input 
data for all seven indicators are above 1 (shown in Table 2 
and Fig. 4). Additionally, for predicting  NH3–N, BOD, and 
 CODCr, models with multivariate inputs outperform models 
with univariate models when inputting observation of only 
1 or 2 months. Therefore, providing more historical data, 
including more time steps and more water quality indicators, 
enables the model to learn the temporal and internal features 
of water quality indicators.

On the other hand, inputting more historical data may 
worsen model performance. For example, comparing mul-
tivariate inputs models with univariate inputs models for 
each indicator except DO, model performances get slightly 

worse. Besides, models for BOD and  CODCr with 12-month 
historical data underperform models with 3-month histori-
cal data. When more data were input into LSTM, water 
quality variables with low correlation to outputs variables 
would bring redundant information, which would interfere 
with the models from finding the patterns among variables 
and then weaken the prediction performances (Galelli et al. 
2014; Maier et al. 2010; Maier and Dandy 2000). Thus, the 
identification of key drivers of the model performance may 
be advantageous for building LSTM models with a simple 
structure and high forecast accuracy (Liang et al. 2020).

As the learning process of deep learning is to capture 
the correlation between model inputs variables and outputs 
variables (Reichstein et al. 2019), the relationship between 
the temporal autocorrelation/cross-correlation of water 
quality indicators and the LSTM performance needs further 
research.

Relationship between autocorrelation/
cross‑correlation of water quality indicators 
and LSTM performances

The autocorrelation and cross-correlation of seven water 
quality variables measured by maximal information coef-
ficient and Pearson coefficient are shown in Fig. S2 and 
Fig. S3, respectively. Figure 5 shows the influence of the 
maximum temporal autocorrelation and cross-correlation 
on the performances of models. The autocorrelation and 
cross-correlation coefficients of  NH3–N  CODMn,  CODCr, 
and TP are bigger than these for BOD, DO, and pH, which 
is generally consistent with the relative relation of model 
performances among these indicators.

In all two input patterns, NSEs are linearly dependent on 
the maximum values of temporal autocorrelation and cross-
correlation coefficients of water quality indicators measured 
by MIC, with the R2 of 0.79 and 0.80. Water quality indica-
tor with more significant autocorrelation or more significant 
cross-correlation with other indicators can be predicted more 
accurately by LSTM. Different input patterns of the same 
correlation metric have almost the same slope in Fig. 5. 
For example, slopes for input pattern a and b are 1.069 and 
0.965, respectively. Nevertheless, much difference exists in 
intercepts (Fig. 5) which may be caused by these differences 
between different input patterns.

To some extent, this study also indicated the statistical 
nature of deep learning algorithms (LSTM in this study) 
that capture the relationship between model inputs varia-
bles and outputs variables (Reichstein et al. 2019). As what 
model performances are significantly linear related to is the 
maximum temporal autocorrelation and cross-correlation, 
the principles and behavior of LSTM were also explained 
that it can store information of model inputs over long time 
periods and “remember” the information of the most related 
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input values (Zhang et al. 2018). Furthermore, statistical 
principles such as stochasticity and uncertainty, which have 
a vital role to play in improving the performance of data-
driven models and in defining their areas of applicability, 
should be considered in the data-driven model-building pro-
cess (Maier and Dandy 2000).

MIC is a more stable correlation metric than the Pearson 
coefficient to calculate temporal autocorrelation/cross-cor-
relation coefficients of water quality indicators. Compared 
to the autocorrelation and cross-correlation of water quality 
indicators measured by MIC, these correlations calculated 
by Pearson coefficient are less significantly linear related 
to model performances (0.79 and 0.77 VS 0.79 and 0.80). 
It may be caused by that water-related data have proper-
ties of nonlinearity, nonstationary, and vagueness due to the 

unpredictable natural changes, interdependent relationship, 
and human interference (Najah Ahmed et al. 2019; Tiya-
sha et al. 2020; Votruba 1988). Since Pearson coefficient is 
sensitive to singular values (Gnanadesikan and Kettenring 
1972) and could only capture the association limited to linear 
function well, Pearson coefficient is not as stable or suitable 
as MIC to measure these autocorrelation/cross-correlations 
in all cases. Hence, with its property of nonlinear statistical 
dependence (Reshef et al. 2011), MIC are competent for 
calculating autocorrelation and cross-correlations of water 
quality variables, which is consistent with results of this 
study. In addition, mutual information (Babel et al. 2015; 
Lv et al. 2020) and partial mutual information (Fernando 
et al. 2009; May et al. 2008; Quilty et al. 2016; Zhou 2020) 
was also employed widely to determine the dominant input 

Fig. 4  Distribution of NSE values of LSTMs for each water quality indicator predicted with univariate input (a) and multivariate inputs (b). The 
red dotted lines represent the threshold of acceptable model performance (NSE = 0.65)
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variables and their appropriate lag times in water resources. 
MIC, a better version of MI with higher accuracy, is also 
suited for LSTM-based model input features selection and 
their appropriate lag times determination.

Conclusion

This study described the implementation of LSTM to predict 
water quality indicators in HRB based on monthly obser-
vations of water quality indicators. LSTM performance for 
predicting  NH3–N, BOD,  CODMn,  CODCr, DO, pH, and 
TP are compared and analyzed. The reasons for the differ-
ences in model performance between different water quality 
indicators were preliminarily explored. Results show that 
LSTMs for predicting BOD,  CODMn,  CODCr, and TP gener-
ally outperform LSTMs for  NH3–N, DO, and pH in HRB. 
Additionally, LSTM performances are linearly dependent on 
the maximum temporal autocorrelation and cross-correlation 
coefficients of water quality indicators measured by MIC.

Although the average NSE of some models could not 
satisfy the required acceptable level, it is noteworthy that 
the model performance may be improved by including other 
water quality or meteorology variables that are not explored 

in this study or by optimizing the hyperparameters of LSTM. 
This study focuses on the most basic application of LSTM. 
Because, whether in research or in application, the higher 
limit of competence of LSTM to predict water quality is 
hard to reach, thus, studying the measurement to predict the 
lower limit of LSTM’s predictive power is more meaning-
ful. However, the highest competence of LSTM to predict 
water quality also needs to be explored specifically. There 
are also a lot of points which cannot be explained clearly. 
For example, some models with high input–output correla-
tions performed poorly, and results may not be convincing 
enough. They are limited by available data and experiments 
and will be studied in the future work.

Appendix A LSTM model structure

A memory block, whose state at time t is illustrated in Fig. 3, 
consists of a forget gate, an input gate, a memory cell, and an 
output gate (Hochreiter and Schmidhuber 1997). In the last 
computation at time (t − 1) , both cell state (Ct−1) and output 
(ht−1) are stored by the memory block, and the initial values of 
C0 and h0 are zero. At time t , new inputs (Xt) are available. First, 
the forget gate, which determines what information to remove, 

Fig. 5  Scatter plots demonstration of the relationship between per-
formances and the maximum autocorrelation and cross-correlation of 
water quality indicators calculated by a MIC with multivariate inputs; 
b MIC with univariate inputs; c Pearson coefficient with multivari-

ate inputs; d Pearson coefficient with univariate inputs. R2, coefficient 
of determination; p, p-value of statistical significance test for linear 
regression
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generates a value (f t) between 0 and 1 as a basis for determining 
the extent of allowing Ct−1 to pass by combing ht−1 and Xt into 
sigmoid function (Eq. (10)). Meanwhile, a new candidate cell 
state ( ̃ct) and its coefficient can be generated by Eqs. (11) and 
(12), respectively. Thereafter, the new cell state (Ct) is deter-
mined according to Eq. (13). Next, the output gate produces a 
value (ot) to determine the parts of the cell state to output based 
on Eq. (14). Finally, the output is calculated by Eq. (15).

In Eqs. (10), (11), (12), and (14), W  denotes the matri-
ces of weights for the gates or cells with the corresponding 
subscripts; b represents learnable biases. Besides, � and 
tanh denotes the sigmoid function and the tanh function, 
respectively.
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